• Play 2 Framework

    Play 2 ist ein modernes Open-Source Webframework. Play 2 ist für die Umsetzung von hochverfügbaren Webapplikationen von Lightbend entwickelt worden. Unternehmen wie Zalando, LinkedIn, TheGuardian, Wallmart oder Twitter nutzen diese Webtechnologie für den Betrieb ihrer Online-Plattformen. 

    In durchgeführten Studien zur Performance und anderen Faktoren für unsere Kunden, konnte sich das Framework klar gegen Konkurrenten aus dem .NET, Node.JS und Java EE Umfeld durchsetzen.

    Da Play in Scala, einer modernen JVM Sprache, programmiert worden ist, kann es in neueren Versionen auch mit der Programmiersprache Java verwendet werden. Mithilfe des Play 2 Frameworks lassen sich Applikationen leicht und ohne große Konfigurationen entwickeln. 

     

  • Lagom Microservices Framework

    Lagom ist ein modernes Open-Source Microservice Framework von Lightbend. Es basiert auf Technologien von Lightbend, wie dem Play 2 Framework oder akka. Mithilfe von Lagom können veraltete, große Softwaresysteme, die als Monolith in Java EE programmiert worden sind, mithilfe von moderner Microservice Architektur neu entwickelt und verbessert werden.

     

  • Apache Spark

    In Deutschland ist das Thema Big Data, also die Verarbeitung von großen Datenmengen, zunehmend interessanter geworden. Durch die zunehmende Einführung der Industrie 4.0 und der damit verbundenen Digitalisierung generieren Unternehmen zunehmend mehr Informationen als noch vor zehn Jahren.

    Auch die E-Commerce Plattform Amazon nutzt generierte Informationen um das Kaufverhalten von Kunden analysieren zu können. Amazon verwendet unter anderem Apache Spark zur Analyse dieser Informationen.

    Apache Spark ist eine Open-Source-Lösung der Apache-Foundation. Ursprünglich an der kalifornischen Universität Berkeley entwickelt, wurde das Cluster-Computing-Framework 2010 von Apache übernommen und stetig weiterentwickelt. 

    Spark ist eine modular aufgebaute Plattform für schnelle Datenanalysen. Es gibt Module für die Arbeit mit SQL, Streamingdaten, Graphen und Maschinlearning Algorithmen. Das Framework bringt zahlreiche Schnittstellen für Programmiersprachen mit. So können Sparkprogramme in den Programmiersprachen Python, R, Scala und Java programmiert und anschließend in Spark-Cluster verteilt und ausgeführt werden.

    Nachfolgende Abbildung verdeutlicht den Aufbau von Apache Spark grafisch.

     

    Spark Stack
    Spark Stack

     

    Wir nutzen Apache Spark unter anderem für die Berechnung unseres Recommender Systems in unserem Produkt croGoDeal.

  • Java EE

    Aus dem Bereich der Unternehmensanwendungen ist Java nicht mehr wegzudenken. Hier zählt vor allem StabilitätSicherheit und eine breite Akzeptanz auf dem Markt. Die Java Enterprise Edition (JavaEE) ist der De-fakto-Standard für Backends, die lokal im Unternehmen oder in der Cloud, die Geschäftslogik abbilden. Bereits 1999 kam die erste Version von JavaEE auf den Markt. Dementsprechend ausgereift und etabliert ist diese Technologie und eignet sich hervorragend als Service für Webanwendungen oder als Teilschicht einer Multi-Tier-Architektur. Mit dem Ökosystem, das JavaEE mitbringt, lassen sich verschiedenste Datenbanktechnologien ansprechen und neueste APIs wie z. B. REST oder Websockets implementieren.

    Durch die umfangreiche Projekterfahrung mit JavaEE von Tobi und Toni ist innFactory Ihr Partner für die Planung und Umsetzung Ihrer JavaEE-Vorhaben.

  • Java FX

    JavaFX ermöglicht modernste Oberflächen für Desktopanwendungen und hat das in die Jahre gekommen Framework "Java Swing" erfolgreich abgelöst. Seit der Java-Version 7 ist JavaFX Teil des JDKs. Die Spezialität von JavaFX sind große und vielschichtige Anwendung, die eine klare Struktur und ein fortschrittliches Design verlangen.

    Die Features von JavaFX sind:

    • Neue Elemente wie z. B. Media Player, Web Rendering, Diagramme und vieles mehr
    • Besser Trennung von Model, View und Controller durch die Oberflächendefinition mit FXML
    • Individuelle Styles durch CSS
    • Eine integrierte Bibliothek für Grafiken (2D und 3D), sowie Animationen als Gegenstück zu Flash, JQuery und CSS Animationen
    • Erweiterungen wie z. B. ControlsFX

     

    Link: http://docs.oracle.com/javafx/

    Java FX Erweiterung von uns auf GitHub

  • Im Rahmen eines Kundenprojektes besuchte Tobias vergangene Woche die Scaladays in Kopenhagen. Zusätzlich besuchte er ein Meet-Up von Lightbend zum Thema Fast Data Plattform und die Typelevel Summits, die unmittelbar nach den Scaladays stattgefunden haben. In Zahlen konnte Tobias 25 verschiedene Talks von Speakern aus der ganzen Welt sehen. Insgesamt also sehr viel neuer Input in den Bereichen Scala, akka, play und co. 

    Neben vielen Themen in den Bereichen von Streaming Data (akka streaming, fast data plattform) und Microservices (CQRS, Datenvalidation mit Cats) war auch der neue Scala Compiler Dotty ein großes Thema der Konferenz. Die angesprochenen Verbesserungen sind alle sehr vielversprechend. Neben mehr Geschwindigkeit bei der Compilezeit wird die Sprache Scala an sich klarer und in unseren Augen weiter stark verbessert. 

    Ein für unser noch eher neues, aber dennoch sehr interessantes Framework ist scala meta. Das scala meta Livecoding in Form einer Erweiterung für REST APIs, war ein tolles Beispiel von Pathikrit Bhowmick. Der beste Talk der Konferenz kam in unseren Augen von Gabriele Petronella („Monad transformers down to earth“). Eine ähnlich gute Erklärung zu Monaden ist uns in Scala bisher nicht bekannt gewesen. 

    Für unser Projekt croGoDeal von großem Interesse waren auch die Talks von IBM zu Spark, sowie von Salesforce zu deren Plattform Einstein und der Spark Erweiterung namens Optimus Prime. Wir hoffen, dass diese typsichere Erweiterung von Spark in absehbarer Zeit als Open-Source Projekt veröffentlicht wird, sodass man dieses hervorragende Tool auch außerhalb von Salesforce benutzen kann.

    Alle Talks der Konferenz findet man auf dem YouTube Channel der ScalaDays.

     

     

     

     

  • Reaktive Systeme sind Computersysteme die kontinuierlich auf ihre Umgebung reagieren. Der in diesem Zusammenhang geprägte Begriff des Aktorenmodells wurde erstmals in den frühen 1970er Jahren von Carl Hewitt verwendet. Sein mathematisches Model beschreibt ein universales Verfahren zur parallelen Programmierung.  Er war seiner Zeit weit voraus, da zu diesem Zeitpunkt die Rechner noch nicht leistungsfähig genug waren. Das Modell wurde erstmals 1987 in der Programmiersprache Erlang von Ericsson verwendet. Durch den Einsatz der Technologie konnte Ericsson einen Switch mit einer Zuverlässigkeit von 99,999999999% bauen. Dies entspricht einer Ausfallzeit von unter 0.65 Sekunden in 20 Jahren. In den nachfolgenden Jahrzehnten stieg die Leistung der Computer immer weiter an. Anfang des neuen Jahrtausends erreichten die Prozessoren mit den eingesetzten Materialien ihre maximale Taktfrequenz. Prozessorhersteller, wie Intel und AMD, bauten fortan Prozessoren mit mehreren Prozessorkernen bei gleichbleibender Taktfrequenz. Einerseits kann die Hitzeentwicklung bei noch höheren Taktraten mit herkömmlichen Mitteln nicht mehr bewältigt werden. Andererseits kommt es bei immer kleineren Transistoren zu quantenmechanischen Seiteneffekten. Heute erhöhen die Hersteller die Anzahl der Kerne pro CPU, um dennoch eine Leistungssteigerung der CPUs zu erreichen. Dadurch steigt die Relevanz von paralleler Programmierung, da die Berechnung der Algorithmen auf mehrere CPU-Kerne verteilt werden muss. Die Entwicklung von Software mit mehreren Threads, oder über mehrere Rechner hinweg, ist für Entwickler mit vielen Problemen verbunden und kompliziert. Dies ist unter anderem auf die Speicherverwaltung der Threads und Prozesse zurückzuführen. Als Folge entstehen in den letzten Jahren immer mehr reaktive Frameworks für moderne Programmiersprachen, wie zum Beispiel akka für Scala und Java. Reaktive Frameworks bieten dem Entwickler aber weitaus mehr, als nur einfache Parallelisierung über mehrere Prozesse und physikalische Knoten. Mithilfe der Frameworks lassen sich hochskalierbare, fehlertolerante Systeme entwerfen. In diesem Blogbeitrag, wollen wir das Aktorenmodell genauer betrachten.


    Der Entwurf von nebenläufigen Anwendungen stellt seit Jahren eine Herausforderung dar, für die es keine einfache Lösung gibt. Das Aktorenmodell stellt eine erprobte und vergleichsweise einfache Weise dar, nebenläufige Algorithmen umzusetzen. Das Aktorenmodell ist ein Architekturmuster, dass auf Basis von Nachrichtenaustausch (=Message Passing) eine verteilte Applikation ermöglicht, ohne dabei einen geteilten Zustand (=Shared State) mit mehren Aktoren zu benötigen. Das Aktorenmodell ist vielfach implementiert, teils in funktionalen Sprachen wie Erlang, teils als Frameworks wie akka oder libcppa. Ein Aktor ist ein leichtgewichtiger und autonomer Prozess. Dem Aktor können Nachrichten geschickt werden, für die er ein eigenes Verhalten bereit hält, welches sich zur Laufzeit in der Regel nicht verändert. Ein Aktor arbeitet dabei immer nur eine Nachricht gleichzeitig ab. Das Aktormodell ist nicht an spezielle Datenstrukturen gebunden, sodass Aktoren lose gekoppelt untereinander kommunizieren können. Leichtgewichtig ist ein Aktor, da er kein eigenen Prozess besitzt, sondern zum Verarbeiten einer Nachricht einen Prozess zugewiesen bekommt. Aktoren nutzen die verfügbaren Ressourcen eines Threads optimal aus und blockieren die Verarbeitung nicht. 

    Aktorenmodell Actors akka

    Die Abbildung zeigt ein beispielhaftes Netz von Aktoren. Jeder Aktor hat seine eigene Mailbox und einen isolierten Zustand. Basierend auf seinem definierten Verhalten antwortet der Aktor mit dem versenden einer eigenen Nachricht oder erstellt eigene Aktoren und ändert sein zukünftiges Verhalten. Zusammengefasst definiert sich ein Aktorsystem durch folgende Eigenschaften:

    • Ein Aktor kann andere Aktoren erschaffen und mit ihnen kommunizieren.
    • Jeder Aktor hat einen eindeutigen Namen, der als Adresse bei der Kommunikation verwendet werden kann. (in akka)
    • Die Kommunikation zwischen Aktoren basiert auf dem Senden von asynchronen, unveränderbaren (=immutable) Nachrichten an andere Aktoren.
    • Die Nachrichten werden zur Verarbeitung in einer Mailbox gepuffert. Sie ist eine Queue mit n Produzenten (Senderaktor) und einem Konsumenten (Empfängeraktor)
    • Abhängig von der Reihenfolge, den Prioritäten oder dem internen Zustand werden die Nachrichten mittels Pattern Matching von internen Funktionen verarbeitet, die die Ergebnisse ihrerseits wieder als Nachrichten versenden. 

    Akka bildet das Aktorenmodell als Framework für die JVM ab. Es wird häufig in den Programmiersprachen Scala und Java verwendet und wurde erstmals im Juli 2009 bei GitHub von Jonas Bonér veröffentlicht. Ein Aktor ist in akka die kleinste Einheit im System und übernimmt in der Regel eine bestimmte Aufgabe. Dabei kann der Aktor seinen Zustand, und damit das Verhalten beim Eintreffen bei weiteren Nachrichten, verändern. Der Zustand eines Aktors wird durch die Werte seiner Variablen definiert. Diese Werte können ausschließlich durch eingehende Nachrichten anderer Aktoren geändert werden. Da es keine gemeinsamen Speicherbereiche mit anderen Aktoren gibt, ist gewährleistet, dass der Zustand eines Aktors nicht durch Zugriffe von außen manipuliert werden kann. Sollte ein Aktor durch einen Fehler zum Absturz gebracht werden, kann der Supervisor, also der Erzeuger des Aktors, den Aktor neu initialisieren und wiederherstellen. Das Verhalten eines Aktors bezeichnet die Logik die beim Eintreffen einer Nachricht ausgeführt wird. Die Logik kann jederzeit als Reaktion auf eine Nachricht verändert werden. Jeder Aktor hat genau eine Mailbox für den Empfang von Nachrichten. Die Mailbox ist standardmäßig eine First In – First Out (FiFo) Queue. Die Queue der Mailbox kann in akka so konfiguriert werden, dass bestimmte Nachrichten priorisiert bearbeitet werden. Auch die Größe der Queue ist frei definierbar.   

    akka bietet noch viele weiter Vorteile, die in vielen verschiedenen Blogbeiträgen im Internet und in einschlägigen Büchern beschrieben werden. Dazu zählen unter anderem der Remotezugriff oder das Clustering. Diese Fähigkeiten, macht akka zu einem hervorragendem Framework für moderne Microservices. Häufig findet man akka im sogenannten SMACK Stack wieder - SMACK steht hierbei für Spark, Mesos, akka, Cassandra, Kafka. Dieser Stack ist die Basis für unser Fast Data System bei croGoDeal.


    Reaktive Programmierung ist aktuell wie nie zuvor. Der Begriff ist allerdings nicht genau definiert. Somit bezeichnen sich viele Applikationen als reaktiv, die es gar nicht sind. Reaktive Programmierung wird häufig mehr als Buzzword für eine spezielle Art von asynchrone Programmierung verwendet. Die vermutlich am besten passende Beschreibung einer reaktiven Architektur liefert das Reactivo Manifesto. Das möglichst einfache Erreichen der Ziele des Reactivo Manifestos verfolgen diverse Frameworks. Eines der besten für Java und Scala ist derzeit akka. Es ist mit verhältnismäßig einfachen Mitteln möglich antwortbereite, widerstandsfähige, elastische und nachrichtenorientierte Systeme auf Basis der JVM zu implementieren. Ein Java oder Scala Softwarearchitekt für skalierbare Applikationen sollte sich unbedingt erweiterte Kenntnisse in akka aneignen und das Framework in seine Planung mit einbeziehen.