Reaktive Programmierung mit Aktoren
Reaktive Systeme sind Computersysteme die kontinuierlich auf ihre Umgebung reagieren. Der in diesem Zusammenhang geprägte Begriff des Aktorenmodells wurde erstmals in den frühen 1970er Jahren von Carl Hewitt verwendet. Sein mathematisches Model beschreibt ein universales Verfahren zur parallelen Programmierung. Er war seiner Zeit weit voraus, da zu diesem Zeitpunkt die Rechner noch nicht leistungsfähig genug waren. Das Modell wurde erstmals 1987 in der Programmiersprache Erlang von Ericsson verwendet. Durch den Einsatz der Technologie konnte Ericsson einen Switch mit einer Zuverlässigkeit von 99,999999999% bauen. Dies entspricht einer Ausfallzeit von unter 0.65 Sekunden in 20 Jahren. In den nachfolgenden Jahrzehnten stieg die Leistung der Computer immer weiter an. Anfang des neuen Jahrtausends erreichten die Prozessoren mit den eingesetzten Materialien ihre maximale Taktfrequenz. Prozessorhersteller, wie Intel und AMD, bauten fortan Prozessoren mit mehreren Prozessorkernen bei gleichbleibender Taktfrequenz. Einerseits kann die Hitzeentwicklung bei noch höheren Taktraten mit herkömmlichen Mitteln nicht mehr bewältigt werden. Andererseits kommt es bei immer kleineren Transistoren zu quantenmechanischen Seiteneffekten. Heute erhöhen die Hersteller die Anzahl der Kerne pro CPU, um dennoch eine Leistungssteigerung der CPUs zu erreichen. Dadurch steigt die Relevanz von paralleler Programmierung, da die Berechnung der Algorithmen auf mehrere CPU-Kerne verteilt werden muss. Die Entwicklung von Software mit mehreren Threads, oder über mehrere Rechner hinweg, ist für Entwickler mit vielen Problemen verbunden und kompliziert. Dies ist unter anderem auf die Speicherverwaltung der Threads und Prozesse zurückzuführen. Als Folge entstehen in den letzten Jahren immer mehr reaktive Frameworks für moderne Programmiersprachen, wie zum Beispiel akka für Scala und Java. Reaktive Frameworks bieten dem Entwickler aber weitaus mehr, als nur einfache Parallelisierung über mehrere Prozesse und physikalische Knoten. Mithilfe der Frameworks lassen sich hochskalierbare, fehlertolerante Systeme entwerfen. In diesem Blogbeitrag, wollen wir das Aktorenmodell genauer betrachten.
Der Entwurf von nebenläufigen Anwendungen stellt seit Jahren eine Herausforderung dar, für die es keine einfache Lösung gibt. Das Aktorenmodell stellt eine erprobte und vergleichsweise einfache Weise dar, nebenläufige Algorithmen umzusetzen. Das Aktorenmodell ist ein Architekturmuster, dass auf Basis von Nachrichtenaustausch (=Message Passing) eine verteilte Applikation ermöglicht, ohne dabei einen geteilten Zustand (=Shared State) mit mehren Aktoren zu benötigen. Das Aktorenmodell ist vielfach implementiert, teils in funktionalen Sprachen wie Erlang, teils als Frameworks wie akka oder libcppa. Ein Aktor ist ein leichtgewichtiger und autonomer Prozess. Dem Aktor können Nachrichten geschickt werden, für die er ein eigenes Verhalten bereit hält, welches sich zur Laufzeit in der Regel nicht verändert. Ein Aktor arbeitet dabei immer nur eine Nachricht gleichzeitig ab. Das Aktormodell ist nicht an spezielle Datenstrukturen gebunden, sodass Aktoren lose gekoppelt untereinander kommunizieren können. Leichtgewichtig ist ein Aktor, da er kein eigenen Prozess besitzt, sondern zum Verarbeiten einer Nachricht einen Prozess zugewiesen bekommt. Aktoren nutzen die verfügbaren Ressourcen eines Threads optimal aus und blockieren die Verarbeitung nicht.
Die Abbildung zeigt ein beispielhaftes Netz von Aktoren. Jeder Aktor hat seine eigene Mailbox und einen isolierten Zustand. Basierend auf seinem definierten Verhalten antwortet der Aktor mit dem versenden einer eigenen Nachricht oder erstellt eigene Aktoren und ändert sein zukünftiges Verhalten. Zusammengefasst definiert sich ein Aktorsystem durch folgende Eigenschaften:
- Ein Aktor kann andere Aktoren erschaffen und mit ihnen kommunizieren.
- Jeder Aktor hat einen eindeutigen Namen, der als Adresse bei der Kommunikation verwendet werden kann. (in akka)
- Die Kommunikation zwischen Aktoren basiert auf dem Senden von asynchronen, unveränderbaren (=immutable) Nachrichten an andere Aktoren.
- Die Nachrichten werden zur Verarbeitung in einer Mailbox gepuffert. Sie ist eine Queue mit n Produzenten (Senderaktor) und einem Konsumenten (Empfängeraktor)
- Abhängig von der Reihenfolge, den Prioritäten oder dem internen Zustand werden die Nachrichten mittels Pattern Matching von internen Funktionen verarbeitet, die die Ergebnisse ihrerseits wieder als Nachrichten versenden.
Akka bildet das Aktorenmodell als Framework für die JVM ab. Es wird häufig in den Programmiersprachen Scala und Java verwendet und wurde erstmals im Juli 2009 bei GitHub von Jonas Bonér veröffentlicht. Ein Aktor ist in akka die kleinste Einheit im System und übernimmt in der Regel eine bestimmte Aufgabe. Dabei kann der Aktor seinen Zustand, und damit das Verhalten beim Eintreffen bei weiteren Nachrichten, verändern. Der Zustand eines Aktors wird durch die Werte seiner Variablen definiert. Diese Werte können ausschließlich durch eingehende Nachrichten anderer Aktoren geändert werden. Da es keine gemeinsamen Speicherbereiche mit anderen Aktoren gibt, ist gewährleistet, dass der Zustand eines Aktors nicht durch Zugriffe von außen manipuliert werden kann. Sollte ein Aktor durch einen Fehler zum Absturz gebracht werden, kann der Supervisor, also der Erzeuger des Aktors, den Aktor neu initialisieren und wiederherstellen. Das Verhalten eines Aktors bezeichnet die Logik die beim Eintreffen einer Nachricht ausgeführt wird. Die Logik kann jederzeit als Reaktion auf eine Nachricht verändert werden. Jeder Aktor hat genau eine Mailbox für den Empfang von Nachrichten. Die Mailbox ist standardmäßig eine First In – First Out (FiFo) Queue. Die Queue der Mailbox kann in akka so konfiguriert werden, dass bestimmte Nachrichten priorisiert bearbeitet werden. Auch die Größe der Queue ist frei definierbar.
akka bietet noch viele weiter Vorteile, die in vielen verschiedenen Blogbeiträgen im Internet und in einschlägigen Büchern beschrieben werden. Dazu zählen unter anderem der Remotezugriff oder das Clustering. Diese Fähigkeiten, macht akka zu einem hervorragendem Framework für moderne Microservices. Häufig findet man akka im sogenannten SMACK Stack wieder – SMACK steht hierbei für Spark, Mesos, akka, Cassandra, Kafka. Dieser Stack ist die Basis für unser Fast Data System bei croGoDeal.
Reaktive Programmierung ist aktuell wie nie zuvor. Der Begriff ist allerdings nicht genau definiert. Somit bezeichnen sich viele Applikationen als reaktiv, die es gar nicht sind. Reaktive Programmierung wird häufig mehr als Buzzword für eine spezielle Art von asynchrone Programmierung verwendet. Die vermutlich am besten passende Beschreibung einer reaktiven Architektur liefert das Reactivo Manifesto. Das möglichst einfache Erreichen der Ziele des Reactivo Manifestos verfolgen diverse Frameworks. Eines der besten für Java und Scala ist derzeit akka. Es ist mit verhältnismäßig einfachen Mitteln möglich antwortbereite, widerstandsfähige, elastische und nachrichtenorientierte Systeme auf Basis der JVM zu implementieren. Ein Java oder Scala Softwarearchitekt für skalierbare Applikationen sollte sich unbedingt erweiterte Kenntnisse in akka aneignen und das Framework in seine Planung mit einbeziehen.